基于改进人工势场法的移动机器人路径规划
吴梅花 2024/8/22 10:15:35
(泰山科技学院,山东 泰安 271000)
摘要:本文主要解决采用传统人工势场法时机器人与障碍物碰撞和陷入局部极小点的问题。首先针对机器人与障碍物发生碰撞的问题,通过引入障碍物半径和机器人半径,对斥力函数进行了改进;然后针对机器陷入局部极小点的问题,在不同环境下根据“中心线”法改变合力。最后,在MATLAB平台上对改进人工势场法进行验证,由仿真结果可以看出,改进后的人工势场法能够成功解决机器人与障碍物发生碰撞的问题,并且避免了机器人陷入局部极小点的现象。
关键词:移动机器人,改进人工势场法,改进斥力函数,“中心线”法,MATLAB
Path planning of mobile robot based on the improved artificial potential field method
Wu Meihua
(Taishan College of Science and Technology ,Shandong Taian ,271000)
ABSTRACT:This paper mainly solves the problem of robot colliding with obstacles and falling into local minima when using the traditional artificial potential field method. Firstly, the repulsion function is improved by introducing the radius of the obstacle and the radius of the robot to the problem of the collision between the robot and the obstacle. Then, in order to solve the problem of the robot falling into the local minimum point, the resultant force is changed according to the "center line" method in different environments. Finally, the improved artificial potential field method is verified on the MATLAB platform, it can be seen from the simulation results that the improved artificial potential field method can successfully solve the problem of collision between the robot and the obstacle, and avoid the phenomenon of the robot falling into the local minimum point.
KEYWORDS: mobile robot, the improved artificial potential field method, the improved repulsion function, “Center line” method, MATLAB
1 引言
随着机器人技术的迅速发展,移动机器人已经开始在各行各业中得到应用,尤其是餐厅、银行和各种公共场合。在移动机器人技术中,路径规划是最基本的,良好的路径规划能力是移动机器人完成各项任务的前提。路径规划是指移动机器人通过各种算法等方式,找出一条从当前位置到目标点的较优路径来。目前,在进行移动机器人路径规划时最常采用的方法有粒子群算法,遗传算法,鱼群算法,神经网络算法,蚁群算法和人工势场法。其中遗传算法、粒子群算法、鱼群算法、神经网络和蚁群算法是非常有效的路径规划方法,但计算逻辑复杂,运算量较大。相对而言,人工势场法逻辑简单,计算量小,效率高,且便于理解,在路径规划中得到广泛地应用。杜轩等人将D * Lite算法与人工势场法相结合进行路径规划,首先采用D * Lite算法进行全局路径规划,当检测到动态障碍物时启用人工势场法,并提出“虚拟目
标点”法解决了局部极小点问题[1]。刘翰培等人针对目标不可达和局部极小值问题,提出了人工势场法与模糊控制相耦合的算法[2]。颜海彬等人通过改进斥力函数解决了目标不可达问题,(未完,下一页)
附件下载:基于改进人工势场法的移动机器人路径规划
|